Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Cells ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474370

RESUMO

Parathyroid hormone (PTH) plays a pivotal role in maintaining calcium homeostasis, largely by modulating bone remodeling processes. Its effects on bone are notably dependent on the duration and frequency of exposure. Specifically, PTH can initiate both bone formation and resorption, with the outcome being influenced by the manner of PTH administration: continuous or intermittent. In continuous administration, PTH tends to promote bone resorption, possibly by regulating certain genes within bone cells. Conversely, intermittent exposure generally favors bone formation, possibly through transient gene activation. PTH's role extends to various aspects of bone cell activity. It directly influences skeletal stem cells, osteoblastic lineage cells, osteocytes, and T cells, playing a critical role in bone generation. Simultaneously, it indirectly affects osteoclast precursor cells and osteoclasts, and has a direct impact on T cells, contributing to its role in bone resorption. Despite these insights, the intricate mechanisms through which PTH acts within the bone marrow niche are not entirely understood. This article reviews the dual roles of PTH-catabolic and anabolic-on bone cells, highlighting the cellular and molecular pathways involved in these processes. The complex interplay of these factors in bone remodeling underscores the need for further investigation to fully comprehend PTH's multifaceted influence on bone health.


Assuntos
Reabsorção Óssea , Hormônio Paratireóideo , Humanos , Osso e Ossos/metabolismo , Medula Óssea/metabolismo , Reabsorção Óssea/metabolismo , Osteoblastos/metabolismo , Hormônio Paratireóideo/metabolismo
2.
Res Sq ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38463956

RESUMO

Alzheimer's disease (AD) is a major progressive neurodegenerative disorder of the aging population. High post-menopausal levels of the pituitary gonadotropin follicle-stimulating hormone (FSH) are strongly associated with the onset of AD, and we have shown recently that FSH directly activates the hippocampal Fshr to drive AD-like pathology and memory loss in mice. To establish a role for FSH in memory loss, we used female 3xTg;Fshr+/+, 3xTg;Fshr+/- and 3xTg;Fshr-/- mice that were either left unoperated or underwent sham surgery or ovariectomy at 8 weeks of age. Unoperated and sham-operated 3xTg;Fshr-/- mice were implanted with 17ß-estradiol pellets to normalize estradiol levels. Morris Water Maze and Novel Object Recognition behavioral tests were performed to study deficits in spatial and recognition memory, respectively, and to examine the effects of Fshr depletion. 3xTg;Fshr+/+ mice displayed impaired spatial memory at 5 months of age; both the acquisition and retrieval of the memory were ameliorated in 3xTg;Fshr-/- mice and, to a lesser extent, in 3xTg;Fshr+/- mice- -thus documenting a clear gene-dose-dependent prevention of hippocampal-dependent spatial memory impairment. At 5 and 10 months, sham-operated 3xTg;Fshr-/- mice showed better memory performance during the acquasition and/or retrieval phases, suggesting that Fshr deletion prevented the progression of spatial memory deficits with age. However, this prevention was not seen when mice were ovariectomized, except in the 10-month-old 3xTg;Fshr-/- mice. In the Novel Object Recognition test performed at 10 months, all groups of mice, except ovariectomized 3xTg;Fshr-/- mice showed a loss of recognition memory. Consistent with the neurobehavioral data, there was a gene-dose-dependent reduction mainly in the amyloid ß40 isoform in whole brain extracts. Finally, serum FSH levels < 8 ng/mL in 16-month-old APP/PS1 mice were associated with better retrieval of spatial memory. Collectively, the data provide compelling genetic evidence for a protective effect of inhibiting FSH signaling on the progression of spatial and recognition memory deficits in mice, and lay a firm foundation for the use of an FSH-blocking agent for the early prevention of cognitive decline in postmenopausal women.

3.
Nat Rev Endocrinol ; 19(11): 626-638, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37587198

RESUMO

Adipose tissue is a dynamic component of the bone marrow, regulating skeletal remodelling and secreting paracrine and endocrine factors that can affect haematopoiesis, as well as potentially nourishing the bone marrow during periods of stress. Bone marrow adipose tissue is regulated by multiple factors, but particularly nutrient status. In this Review, we examine how bone marrow adipocytes originate, their function in normal and pathological states and how bone marrow adipose tissue modulates whole-body homoeostasis through actions on bone cells, haematopoietic stem cells and extra-medullary adipocytes during nutritional challenges. We focus on both rodent models and human studies to help understand the unique marrow adipocyte, its response to the external nutrient environment and its effects on the skeleton. We finish by addressing some critical questions that to date remain unanswered.


Assuntos
Tecido Adiposo , Células da Medula Óssea , Medula Óssea , Humanos , Adipócitos/fisiologia , Medula Óssea/patologia , Medula Óssea/fisiologia , Células da Medula Óssea/fisiologia , Obesidade/patologia , Redução de Peso
4.
J Bone Miner Res ; 38(9): 1350-1363, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37436066

RESUMO

Genome-wide association studies (GWASs) have advanced our understanding of the genetics of osteoporosis; however, the challenge has been converting associations to causal genes. Studies have utilized transcriptomics data to link disease-associated variants to genes, but few population transcriptomics data sets have been generated on bone at the single-cell level. To address this challenge, we profiled the transcriptomes of bone marrow-derived stromal cells (BMSCs) cultured under osteogenic conditions from five diversity outbred (DO) mice using single-cell RNA-seq (scRNA-seq). The goal of the study was to determine if BMSCs could serve as a model to generate cell type-specific transcriptomic profiles of mesenchymal lineage cells from large populations of mice to inform genetic studies. By enriching for mesenchymal lineage cells in vitro, coupled with pooling of multiple samples and downstream genotype deconvolution, we demonstrate the scalability of this model for population-level studies. We demonstrate that dissociation of BMSCs from a heavily mineralized matrix had little effect on viability or their transcriptomic signatures. Furthermore, we show that BMSCs cultured under osteogenic conditions are diverse and consist of cells with characteristics of mesenchymal progenitors, marrow adipogenic lineage precursors (MALPs), osteoblasts, osteocyte-like cells, and immune cells. Importantly, all cells were similar from a transcriptomic perspective to cells isolated in vivo. We employed scRNA-seq analytical tools to confirm the biological identity of profiled cell types. SCENIC was used to reconstruct gene regulatory networks (GRNs), and we observed that cell types show GRNs expected of osteogenic and pre-adipogenic lineage cells. Further, CELLECT analysis showed that osteoblasts, osteocyte-like cells, and MALPs captured a significant component of bone mineral density (BMD) heritability. Together, these data suggest that BMSCs cultured under osteogenic conditions coupled with scRNA-seq can be used as a scalable and biologically informative model to generate cell type-specific transcriptomic profiles of mesenchymal lineage cells in large populations. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Camundongos de Cruzamento Colaborativo , Células-Tronco Mesenquimais , Camundongos , Animais , Camundongos de Cruzamento Colaborativo/genética , Diferenciação Celular/genética , Transcriptoma/genética , Estudo de Associação Genômica Ampla , Análise da Expressão Gênica de Célula Única , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Células Estromais/metabolismo , Células da Medula Óssea
5.
J Clin Endocrinol Metab ; 108(12): e1465-e1472, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37315208

RESUMO

Bone marrow adipose tissue (BMAT) makes up a significant portion of the marrow space, ranging from 50% to 70%, in healthy adults. It expands with aging, obesity, anorexia nervosa, and irradiation, which are conditions associated with skeletal complications or hematopoietic disorders. Therefore, BMAT has been viewed as a negative component of the bone marrow niche for decades, although the mechanisms and causative relationships have not been well-addressed. Of note, recent studies have revealed that BMAT is a multifaceted tissue that can serve as an energy reservoir to fuel osteoblasts and hematopoietic cells under stressful situations, and also acts as an endocrine/paracrine organ to suppress bone formation and support hematopoiesis at steady-state conditions. In this review, we summarize the uniqueness of BMAT, the complex findings of previous studies, and update our understanding of the physiological roles of BMAT in bone and hematopoietic metabolism based on a newly established bone marrow adipocyte-specific mouse model.


Assuntos
Adipócitos , Medula Óssea , Camundongos , Animais , Humanos , Medula Óssea/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Osso e Ossos , Homeostase
6.
Elife ; 122023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37159501

RESUMO

Conditional deletion of the PTH1R in mesenchymal progenitors reduces osteoblast differentiation, enhances marrow adipogenesis, and increases zinc finger protein 467 (Zfp467) expression. In contrast, genetic loss of Zfp467 increased Pth1r expression and shifts mesenchymal progenitor cell fate toward osteogenesis and higher bone mass. PTH1R and ZFP467 could constitute a feedback loop that facilitates PTH-induced osteogenesis and that conditional deletion of Zfp467 in osteogenic precursors would lead to high bone mass in mice. Prrx1Cre; Zfp467fl/fl but not AdipoqCre; Zfp467fl/fl mice exhibit high bone mass and greater osteogenic differentiation similar to the Zfp467-/- mice. qPCR results revealed that PTH suppressed Zfp467 expression primarily via the cyclic AMP/PKA pathway. Not surprisingly, PKA activation inhibited the expression of Zfp467 and gene silencing of Pth1r caused an increase in Zfp467 mRNA transcription. Dual fluorescence reporter assays and confocal immunofluorescence demonstrated that genetic deletion of Zfp467 resulted in higher nuclear translocation of NFκB1 that binds to the P2 promoter of the Pth1r and increased its transcription. As expected, Zfp467-/- cells had enhanced production of cyclic AMP and increased glycolysis in response to exogenous PTH. Additionally, the osteogenic response to PTH was also enhanced in Zfp467-/- COBs, and the pro-osteogenic effect of Zfp467 deletion was blocked by gene silencing of Pth1r or a PKA inhibitor. In conclusion, our findings suggest that loss or PTH1R-mediated repression of Zfp467 results in a pathway that increases Pth1r transcription via NFκB1 and thus cellular responsiveness to PTH/PTHrP, ultimately leading to enhanced bone formation.


Assuntos
Adipogenia , Osteogênese , Animais , Camundongos , Diferenciação Celular , AMP Cíclico/metabolismo , Osteoblastos/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo
7.
Lancet Diabetes Endocrinol ; 11(5): 362-374, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004709

RESUMO

Over the past 100 years, many major breakthroughs and discoveries have occurred in relation to vitamin D research. These developments include the cure of rickets in 1919, the discovery of vitamin D compounds, advances in vitamin D molecular biology, and improvements in our understanding of endocrine control of vitamin D metabolism. Furthermore, recommended daily allowances for vitamin D have been established and large clinical trials of vitamin D, aimed at clarifying the effect of Vitamin D in the prevention of multiple diseases, have been completed. However, disappointingly, these clinical trials have not fulfilled the expectations many had 10 years ago. In almost every trial, various doses and routes of administration did not show efficacy of vitamin D in preventing fractures, falls, cancer, cardiovascular diseases, type 2 diabetes, asthma, and respiratory infections. Although concerns about side-effects of long-term high-dose treatments, such as hypercalcaemia and nephrocalcinosis, have been around for four decades, some trials from the past 5 years have had new and unexpected adverse events. These adverse events include increased fractures, falls, and hospitalisations in older people (aged >65 years). Several of these clinical trials were powered appropriately for a primary outcome but did not include dose response studies and were underpowered for secondary analyses. Furthermore, more attention should be paid to the safety of high doses of vitamin D supplementation, particularly in older people. In addition, despite universal recommendations by osteoporosis societies for combining calcium supplements with vitamin D there remains insufficient data about their efficacy and effect on fracture risk in the highest risk groups. More trials are needed for people with severe vitamin D deficiency (ie, serum 25-hydroxyvitamin D <25nmol/L [10ng/mL]). In this Personal View, we summarise and discuss some of the major discoveries and controversies in the field of vitamin D.


Assuntos
Diabetes Mellitus Tipo 2 , Fraturas Ósseas , Osteoporose , Deficiência de Vitamina D , Humanos , Idoso , Diabetes Mellitus Tipo 2/tratamento farmacológico , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico , Fraturas Ósseas/epidemiologia , Fraturas Ósseas/prevenção & controle , Osteoporose/complicações , Deficiência de Vitamina D/tratamento farmacológico , Suplementos Nutricionais
8.
Life Sci ; 317: 121417, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36690246

RESUMO

AIMS: We evaluated the effects of resistance training (RT) on bone properties, morphology, and bone extracellular matrix (ECM) remodeling markers in an ovariectomy (OVX) rat model. MAIN METHODS: Thirty-six female rats were divided into four groups: sham sedentary, OVX sedentary, sham RT, and OVX RT. Rats performed RT for ten weeks, during which they climbed a ladder with progressive loads attached to the tail. Tibias were stored for dual-energy X-ray densitometry (DXA), micro-computed tomography (micro-CT), and biomechanical, biophysical, and biochemical analysis. Femurs were stored for morphological, gene expression, and gelatin zymography analysis. KEY FINDINGS: OVX decreased bone mineral density, stiffness, maximal load, and calcium content, which was reversed by RT. The trabecular number, connectivity, and MMP-13 gene expression decreased in OVX groups. Furthermore, OVX increased run-related transcription factor-2 (RUNX-2) and osteoprotegerin (OPG) gene expression, and increased the number of adipocytes in bone marrow and MMP-2 activity. SIGNIFICANCE: RT was efficient in preventing or reversing changes in bone biomechanical properties in OVX groups, improving fracture load and resilience, which is relevant to prevent fractures. On the other hand, RT did not decrease the number of bone adipocytes in the OVX-RT group. However, RT was efficient for increasing trabecular thickness and cortical bone volume, which improved bone resistance. Our findings provide further insights into the mechanisms involved in the role of RT in OVX damage protection.


Assuntos
Treinamento Resistido , Ratos , Feminino , Animais , Humanos , Microtomografia por Raio-X , Osso e Ossos , Densidade Óssea , Modelos Animais , Estrogênios/farmacologia , Ovariectomia
9.
medRxiv ; 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36523407

RESUMO

Post-COVID-19 conditions, also known as "long COVID", has significantly impacted the lives of many individuals, but the risk factors for this condition are poorly understood. In this study, we performed a retrospective EHR analysis of 89,843 individuals at a multi-state health system in the United States with PCR-confirmed COVID-19, including 1,086 patients diagnosed with long COVID and 1,086 matched controls not diagnosed with long COVID. For these two cohorts, we evaluated a wide range of clinical covariates, including laboratory tests, medication orders, phenotypes recorded in the clinical notes, and outcomes. We found that chronic pulmonary disease (CPD) was significantly more common as a pre-existing condition for the long COVID cohort than the control cohort (odds ratio: 1.9, 95% CI: [1.5, 2.6]). Additionally, long-COVID patients were more likely to have a history of migraine (odds ratio: 2.2, 95% CI: [1.6, 3.1]) and fibromyalgia (odds ratio: 2.3, 95% CI: [1.3, 3.8]). During the acute infection phase, the following lab measurements were abnormal in the long COVID cohort: high triglycerides (meanlongCOVID: 278.5 mg/dL vs. meancontrol: 141.4 mg/dL), low HDL cholesterol levels (meanlongCOVID: 38.4 mg/dL vs. meancontrol: 52.5 mg/dL), and high neutrophil-lymphocyte ratio (meanlongCOVID: 10.7 vs. meancontrol: 7.2). The hospitalization rate during the acute infection phase was also higher in the long COVID cohort compared to the control cohort (ratelongCOVID: 5% vs. ratecontrol: 1%). Overall, this study suggests that the severity of acute infection and a history of CPD, migraine, CFS, or fibromyalgia may be risk factors for long COVID symptoms. Our findings motivate clinical studies to evaluate whether suppressing acute disease severity proactively, especially in patients at high risk, can reduce incidence of long COVID.

11.
JCI Insight ; 7(21)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36048537

RESUMO

BM adipocytes (BMAd) are a unique cell population derived from BM mesenchymal progenitors and marrow adipogenic lineage precursors. Although they have long been considered to be a space filler within bone cavities, recent studies have revealed important physiological roles in hematopoiesis and bone metabolism. To date, the approaches used to study BMAd function have been confounded by contributions by nonmarrow adipocytes or by BM stromal cells. To address this gap in the field, we have developed a BMAd-specific Cre mouse model to deplete BMAds by expression of diphtheria toxin A (DTA) or by deletion of peroxisome proliferator-activated receptor gamma (Pparg). We found that DTA-induced loss of BMAds results in decreased hematopoietic stem and progenitor cell numbers and increased bone mass in BMAd-enriched locations, including the distal tibiae and caudal vertebrae. Elevated bone mass appears to be secondary to enhanced endosteal bone formation, suggesting a local effect caused by depletion of BMAd. Augmented bone formation with BMAd depletion protects mice from bone loss induced by caloric restriction or ovariectomy, and it facilitates the bone-healing process after fracture. Finally, ablation of Pparg also reduces BMAd numbers and largely recapitulates high-bone mass phenotypes observed with DTA-induced BMAd depletion.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Feminino , Camundongos , Animais , Medula Óssea/metabolismo , Osteogênese , Células da Medula Óssea , PPAR gama/genética , PPAR gama/metabolismo , Células-Tronco Mesenquimais/metabolismo , Adipócitos/metabolismo
12.
Eur J Endocrinol ; 187(2): R17-R26, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35704348

RESUMO

Understanding the development and regulation of marrow adiposity, as well as its impact on skeletal remodeling has been a major challenge for our field and during my career as well. The story behind this unique phenotype and its relationship to bone turnover is highlighted in my own quest to defining the physiology and pathophysiology of marrow adipocytes.


Assuntos
Adiposidade , Medula Óssea , Adipócitos , Adiposidade/fisiologia , Remodelação Óssea/fisiologia , Humanos , Obesidade
13.
Elife ; 112022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35731039

RESUMO

To investigate roles for bone marrow adipocyte (BMAd) lipolysis in bone homeostasis, we created a BMAd-specific Cre mouse model in which we knocked out adipose triglyceride lipase (ATGL, Pnpla2 gene). BMAd-Pnpla2-/- mice have impaired BMAd lipolysis, and increased size and number of BMAds at baseline. Although energy from BMAd lipid stores is largely dispensable when mice are fed ad libitum, BMAd lipolysis is necessary to maintain myelopoiesis and bone mass under caloric restriction. BMAd-specific Pnpla2 deficiency compounds the effects of caloric restriction on loss of trabecular bone in male mice, likely due to impaired osteoblast expression of collagen genes and reduced osteoid synthesis. RNA sequencing analysis of bone marrow adipose tissue reveals that caloric restriction induces dramatic elevations in extracellular matrix organization and skeletal development genes, and energy from BMAd is required for these adaptations. BMAd-derived energy supply is also required for bone regeneration upon injury, and maintenance of bone mass with cold exposure.


Assuntos
Medula Óssea , Lipólise , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Medula Óssea/metabolismo , Lipase/metabolismo , Lipólise/genética , Masculino , Camundongos
14.
Signal Transduct Target Ther ; 7(1): 155, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35538062

RESUMO

Maxillofacial bone defects are commonly seen in clinical practice. A clearer understanding of the regulatory network directing maxillofacial bone formation will promote the development of novel therapeutic approaches for bone regeneration. The fibroblast growth factor (FGF) signalling pathway is critical for the development of maxillofacial bone. Klotho, a type I transmembrane protein, is an important components of FGF receptor complexes. Recent studies have reported the presence of Klotho expression in bone. However, the role of Klotho in cranioskeletal development and repair remains unknown. Here, we use a genetic strategy to report that deletion of Klotho in Osx-positive mesenchymal progenitors leads to a significant reduction in osteogenesis under physiological and pathological conditions. Klotho-deficient mensenchymal progenitors also suppress osteoclastogenesis in vitro and in vivo. Under conditions of inflammation and trauma-induced bone loss, we find that Klotho exerts an inhibitory function on inflammation-induced TNFR signaling by attenuating Rankl expression. More importantly, we show for the first time that Klotho is present in human alveolar bone, with a distinct expression pattern under both normal and pathological conditions. In summary, our results identify the mechanism whereby Klotho expressed in Osx+-mensenchymal progenitors controls osteoblast differentiation and osteoclastogenesis during mandibular alveolar bone formation and repair. Klotho-mediated signaling is an important component of alveolar bone remodeling and regeneration. It may also be a target for future therapeutics.


Assuntos
Desenvolvimento Ósseo , Osso e Ossos , Proteínas Klotho , Células-Tronco Mesenquimais , Osteogênese , Desenvolvimento Ósseo/fisiologia , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Proteínas Klotho/metabolismo , Maxila/crescimento & desenvolvimento , Maxila/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Fator de Transcrição Sp7
15.
Front Endocrinol (Lausanne) ; 13: 853765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360075

RESUMO

Once considered an inert filler of the bone cavity, bone marrow adipose tissue (BMAT) is now regarded as a metabolically active organ that plays versatile roles in endocrine function, hematopoiesis, bone homeostasis and metabolism, and, potentially, energy conservation. While the regulation of BMAT is inadequately understood, it is recognized as a unique and dynamic fat depot that is distinct from peripheral fat. As we age, bone marrow adipocytes (BMAds) accumulate throughout the bone marrow (BM) milieu to influence the microenvironment. This process is conceivably signaled by the secretion of adipocyte-derived factors including pro-inflammatory cytokines and adipokines. Adipokines participate in the development of a chronic state of low-grade systemic inflammation (inflammaging), which trigger changes in the immune system that are characterized by declining fidelity and efficiency and cause an imbalance between pro-inflammatory and anti-inflammatory networks. In this review, we discuss the local effects of BMAT on bone homeostasis and the hematopoietic niche, age-related inflammatory changes associated with BMAT accrual, and the downstream effect on endocrine function, energy expenditure, and metabolism. Furthermore, we address therapeutic strategies to prevent BMAT accumulation and associated dysfunction during aging. In sum, BMAT is emerging as a critical player in aging and its explicit characterization still requires further research.


Assuntos
Tecido Adiposo , Envelhecimento , Medula Óssea , Adipócitos/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Medula Óssea/metabolismo , Osso e Ossos/metabolismo , Humanos , Inflamação
16.
Surg Endosc ; 36(9): 6984-6996, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35226161

RESUMO

BACKGROUND: Bariatric surgery has been shown to result in weight loss, improved hemoglobin A1C, and decreased mortality but can also lead to bone loss and increased fracture rates. Serum IGFBP-2 is elevated in patients after bariatric surgery and although it may lead to improved blood glucose, may also drive bone resorption, and inhibit IGF-I action. This study tested the hypothesis that Igfbp2-/- mice were acutely protected from bone loss after vertical sleeve gastrectomy (VSG). METHODS: Thirty-four mice, 17 Igfbp2-/- and 17 + / + underwent a hand-sewn VSG or sham surgery, at 16 weeks of age. Mice were harvested at 20 weeks of age. DXA was measured for body composition, areal bone mineral density (aBMD), areal bone mineral content (aBMC), femoral bone mineral density (fBMD), and femoral bone mineral content (fBMC) at 15, 18, and 20 weeks of age. Micro-computed tomography and serum ELISA assays were measured and analyzed at 20 weeks of age. RESULTS: Both Igfbp2-/- and + / + mice lost significant weight (P = 0.0251, P = 0.0003, respectively) and total fat mass (P = 0.0082, P = 0.0004, respectively) at 4 weeks after VSG. Igfbp2+/+ mice lost significant aBMD, fBMD, fBMC, trabecular BMD, trabecular BV/TV and cortical tissue mineral density (P = 0.0150, P = 0.0313, P = 0.0190, P = 0.0072, and 0.0320 respectively). The Igfbp2-/- mice did not show significant bone loss in these parameters nor in trabecular BV/TV. Both Igfbp2-/- and + / + mice had less cortical bone area (P = 0.0181, P = < .00001), cortical area over total area (P = 0.0085, P = 0.0007), and cortical thickness (P = 0.0050, P = < 0.0001), respectively. Igfbp2+/+ mice demonstrated significantly lower polar, minimum, and maximum moments of inertia (P = 0.0031, P = 0.0239, and P = 0.0037, respectively). Igfbp2+/+ had significantly higher levels of IGFBP-2 at 2 weeks postoperatively after VSG (P = 0.035), and elevated levels of CTx and P1NP (P = 0.0127, P = 0.0058, respectively). CONCLUSIONS: Igfbp2-/- mice were protected against trabecular bone loss and had attenuated cortical bone loss 4 weeks after VSG.


Assuntos
Osso Esponjoso , Gastrectomia/efeitos adversos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina , Osteoporose/genética , Animais , Densidade Óssea , Osso Esponjoso/diagnóstico por imagem , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Camundongos , Osteoporose/patologia , Microtomografia por Raio-X
17.
J Bone Miner Res ; 37(4): 700-710, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35038186

RESUMO

Greater bone marrow adiposity (BMAT) is associated with lower bone mineral density (BMD) and vertebral fractures; less is known about BMAT composition and bone. We studied BMAT composition and bone outcomes in 465 participants from the Age Gene/Environment Susceptibility (AGES)-Reykjavik study. BMAT saturation and unsaturation, measured with magnetic resonance spectroscopy, were defined as the ratio of saturated (1.3 ppm peak) or unsaturated (5.3 ppm peak) lipid to total marrow contents, respectively. At baseline and follow-up visits, spine and hip BMD were assessed with quantitative computed tomography (QCT) and dual-energy X-ray absorptiometry (DXA) and vertebral fractures were identified with DXA. Incident clinical fractures were identified through medical records for up to 8.8 years of follow-up. Associations between BMAT composition and BMD, bone loss, and fractures were evaluated in adjusted regression models. At baseline, mean ± standard deviation (SD) participant age was 81.7 ± 4.3 years, mean BMAT unsaturation was 3.5% ± 1.0%, and mean saturation was 46.3% ± 7.2% in the full cohort (47.7% women). Each SD increase in BMAT saturation was associated with lower trabecular BMD: -23.6% (spine) and -13.0% (total hip) (all p < 0.0001). Conversely, BMAT unsaturation (per SD increase) was associated with higher trabecular BMD: +17.5% (spine) and +11.5% (total hip) (all p < 0.001). BMAT saturation (per SD increase) was associated with greater risk for prevalent (odds ratio [OR] 1.46; 95% confidence interval [CI], 1.11-1.92) and incident (OR 1.55; 95% CI, 1.03-2.34) vertebral fracture. BMAT unsaturation (per SD increase) was associated with lower risk for incident vertebral fracture (OR 0.58; 95% CI, 0.38-0.89). In gender stratified analyses, BMAT saturation and unsaturation had opposite associations with incident clinical fracture among men. In general, saturated marrow lipids were associated with worse skeletal outcomes, whereas unsaturated lipids were associated with better outcomes. We recommend that future studies of marrow fat and skeletal health report measurements of saturated and unsaturated marrow lipids, rather than total marrow fat content alone. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Fraturas Ósseas , Fraturas da Coluna Vertebral , Absorciometria de Fóton , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Medula Óssea , Feminino , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/epidemiologia , Humanos , Lipídeos , Masculino , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/epidemiologia
18.
Medicine (Baltimore) ; 101(51): e32309, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36595741

RESUMO

INTRODUCTION: An increasing number of individuals are taking buprenorphine for management of opioid use disorder (OUD). Pain control can be challenging when these patients develop acute pain requiring supplemental analgesia. Buprenorphine's pharmacokinetic profile can render supplemental opioid-based analgesia ineffective. There is limited guidance on the optimal management of buprenorphine when acute pain is anticipated. Although there is growing acceptance that the risk of OUD relapse with buprenorphine discontinuation overshadows the risks of increased opioid utilization and difficult pain control with buprenorphine continuation, perioperative courses comparing buprenorphine dose reduction and full dose buprenorphine continuation have yet to be investigated. Here, we describe the protocol for our randomized controlled, prospective trial investigating the effect of buprenorphine continuation compared to buprenorphine dose reduction on pain control, post-operative opioid use, and OUD symptom management in patients on buprenorphine scheduled for elective surgery. METHODS AND ANALYSIS: This is a single institution, randomized trial that aims to enroll 80 adults using 12 mg buprenorphine or greater for treatment of OUD, scheduled for elective surgery. Participants will be randomly assigned to receive 8mg of buprenorphine on the day of surgery onwards until postsurgical pain subsides or to have their buprenorphine formulation continued at full dose perioperatively. Primary outcome will be a clinically significant difference in pain scores 24 hours following surgery. Secondary outcomes will be opioid consumption at 24, 48, and 72 hours postoperatively, opioid dispensing up to 30 days following surgery, changes in mood and withdrawal symptoms, opioid cravings, relapse of opioid misuse, and continued use of buprenorphine treatment postoperatively.


Assuntos
Dor Aguda , Buprenorfina , Transtornos Relacionados ao Uso de Opioides , Adulto , Humanos , Buprenorfina/uso terapêutico , Analgésicos Opioides , Estudos Prospectivos , Dor Aguda/tratamento farmacológico , Redução da Medicação , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Dor Pós-Operatória/tratamento farmacológico , Tratamento de Substituição de Opiáceos/métodos
20.
Nat Commun ; 12(1): 3408, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099702

RESUMO

Genome-wide association studies (GWASs) for osteoporotic traits have identified over 1000 associations; however, their impact has been limited by the difficulties of causal gene identification and a strict focus on bone mineral density (BMD). Here, we use Diversity Outbred (DO) mice to directly address these limitations by performing a systems genetics analysis of 55 complex skeletal phenotypes. We apply a network approach to cortical bone RNA-seq data to discover 66 genes likely to be causal for human BMD GWAS associations, including the genes SERTAD4 and GLT8D2. We also perform GWAS in the DO for a wide-range of bone traits and identify Qsox1 as a gene influencing cortical bone accrual and bone strength. In this work, we advance our understanding of the genetics of osteoporosis and highlight the ability of the mouse to inform human genetics.


Assuntos
Densidade Óssea/genética , Osteoporose/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Animais , Diferenciação Celular/genética , Camundongos de Cruzamento Colaborativo , Conjuntos de Dados como Assunto , Feminino , Fêmur/fisiologia , Fluoresceínas/administração & dosagem , Corantes Fluorescentes/administração & dosagem , Estudo de Associação Genômica Ampla , Glicosiltransferases/genética , Humanos , Masculino , Células-Tronco Mesenquimais , Camundongos , Camundongos Knockout , Osteoblastos , Osteogênese/genética , RNA-Seq , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA